MANILA REVIEW INSTITUTE, INC.

3F Consuelo Building, 929 Nicanor Reyes St. (formerly Morayta), Manila Tel. No. 8-736-MRII (6744) www.manilareviewinstitute.com

All rights reserved. These handouts/review materials or portions thereof may not be reproduced in any form whatsoever without written permission from MRII.

	CHEMICAL ENGINEERING REFRESHER REVIEW								
ANALYTICAL CHEMISTRY PART 1									
1.		g sample of butter was analyzed by the Kjeldahl method. 50 mL of ex 300M NaOH was required to titrate the liberated ammonia. Calculate 75 80							
2.	A sample taken so a. b.	e of impure salicylic acid, $C_6H_4(OH)COOH$ (one titratable proton), is a that the percent purity is equal to five times the milliliters of 0.0500 M 140 mg 142 mg	nalyz l NaC c. d.	zed by titration. What size sample should be DH used to titrate it? 138 mg 136 mg					
For 3.		consider the titration of 40 mL, 0.2 M Acetic acid using 0.4 M NaOH the initial pH (Before titration) 2.72 1.8		7.22 8.1					
4.	Solve for a. b.	the pH of the solution, after adding 10 mL of NaOH 7.44 4.74	c. d.	4.47 None of these					
5.	Determin a. b.	ne the volume of NaOH required to reach the equivalence point 40 mL 30 mL	c. d.	20 mL 10 mL					
6.	Calculate a. b.	e for the pH at the equivalence point 3.98 9.83	c. d.	9.38 8.93					
7.	The aluminum in a 759.08 mg of impure sulfate sample was precipitated as $AI(OH)_3$ and ignited at 1100°C to yield a precipitate of AI_2O_3 weighing 387.953 mg. Express the result of the analysis in terms of %AI (MW = 27). a. 27.05 b. 13.53 c. 18.67 d. 23.29								
8.		i g sample containing only NaCl and BaCl ₂ yielded 0.4637 of dried Ag n the sample. 55 45	gCI, u c. d.	pon reaction with excess AgNO ₃ . Calculate the 37 73					

9.	Which of the following salts give acidic aqueous solutions?										
(1) KNO ₃ (5) (NH ₄) ₂ SO ₄			(2) KCH₃COO (6) BaCl₂	(3) NH ₄ NO ₃ (7) NaCN		(4) Rbl (8) KNO ₂					
	a. b.	2, 7, 8 3, 5			c. d.	2, 4, 6 1, 4, 7, 6					
For 10-12] A 500-mg sample containing NaOH (40), Na ₂ CO ₃ (106), NaHCO ₃ (84), either alone or in compatible combination is treated with 12.95 mL of 0.100 M HCl to reach the phenolphthalein endpoint and an additional of 18.76 mL to reach the methyl red endpoint.											
10.	Identify t a. b.	the compounds NaOH and Na Na ₂ CO ₃ only	(aside from the inerts) presen $aHCO_3$	t in the sample.	c. d.	Na ₂ CO ₃ and NaHCO ₃ NaHCO ₃ only					
11.		e the % Sodium 27.5% 57.2%	n Carbonate		c. d.	72.5% 52.7%					
12.	Calculate a. b.	e the percentag 27.5% 62.8%	ge of inert in the sample.	EW IV	c. d.	9.8% 15.2%					
13.	standard Calculate		r ₂ O ₇ solution, converting them			species to Fe ²⁺ . Fe ²⁺ ions are then titrated with to titrate the iron in a 1.68-g ore sample. 25.13 13.25					
14.		of a household cid in the solution 1% 10%		The vinegar has a dens	c. d.	i 1.09 g/mL. What is the mass percentage of 8% 4%					
15.						ne ammoniacal solution was treated with 50 mL of stermine the %Ni (58.7) in the alloy. 10.43 41.27					
16.	The TI in a 9.76-g sample of rodenticide was oxidized to the trivalent state and treated with an unmeasured excess Mg/EDTA solution. The reaction is $T^{ 3+} + MgY^{2-} \rightarrow TIY^{-} + Mg^{2+}$										
	Titration sample. a. b.	of the liberated 3.21 2.45				e percentage of Tl ₂ SO ₄ (504.8 g/mol) in the 1.23 4.25					
17.	Determine the number of grams of C_2H_5N that will heat with 81.81g of oxygen in the equation: $C_2H_5N + O2 \rightarrow CO + H_2O + NO$ a. 40.g c. Reaction will not proceed b. None of these d. 22.6g										
18.			of moles of an unknown base d point of the titration.	in a solution when titrate	ed wit	h 0.15M HCl and 22.01mL of the acid were					
	b.	0.9x10 ⁻³ mL			d.	3.3x10 ⁻³ mL					

- 19. What is the Nujol Mull in organic chemical reactions?
 - a. It is a mass spectrum technique and is obtained by grinding up a solid which is mixed with mineral oil to form a suspension for IR spectroscopy
 - b. It is the name of a type of paraffin oil from India and most often used in gas chromatography to enhance the mass transfer properties of compounds
 - c. It is a process applied for inorganic compounds to determine the effervescence of the compound under study
 - d. It is suspension in mineral oil which is placed in between HgCl, Agl and KCl or stainless steel plates to obtain a good spectrum
- 20. Define a salt in terms of acid and base.
 - a. A salt is a compound that follows Le Chatelier's Principle in reactions with other compounds.
 - b. All of these
 - c. A salt is a compound formed when the nucleus of a hydrogen tom enters a quantity of water.
 - d. A salt is a compound (other than water) produced by the reaction of an acid and a base.

